DNA-templated functional group transformations enable sequence-programmed synthesis using small-molecule reagents.
نویسندگان
چکیده
DNA-templated organic synthesis (DTS) has previously been used primarily to direct coupling reactions between two DNA-linked reactants. In some cases, reactants are difficult or impossible to tether to DNA oligonucleotides. The development of strategies that enable non-DNA linked small-molecule reagents to participate in sequence-programmed synthesis therefore would significantly expand the capabilities of DTS. We developed efficient DNA-templated functional group transformations of template-linked azides into corresponding amines, carboxylic acids, and thiols. The application of these reactions to a single-solution mixture of four template-linked organic azides enabled each azide to be transformed sequence specifically into a sulfonamide, carbamate, urea, or thiourea using small-molecule sulfonyl chloride, chloroformate, isocyanate, or isothiocyanate reagents not tethered to DNA. Only the four desired products were observed, without formation of any of the 12 possible undesired cross-products. Our results represent a new approach to small molecule diversification in a DNA-programmed manner.
منابع مشابه
Directing otherwise incompatible reactions in a single solution by using DNA-templated organic synthesis.
General methods for translating amplifiable information carriers such as DNA into synthetic molecules may enable the evolution of non-natural molecules through iterated cycles of translation, selection, and amplification that are currently available only to proteins and nucleic acids. During the process of developing such a method, we recently discovered that DNA templates can sequence-specific...
متن کاملMultistep small-molecule synthesis programmed by DNA templates.
The translation of DNA sequences into synthetic products is a key requirement of our approach to evolving synthetic molecules through iterated cycles of translation, selection, and amplification. Here we report general linker and purification strategies for sequence-specific DNA-templated synthesis that collectively enable the product of a DNA-templated reaction to be isolated and to undergo su...
متن کاملTranslation of DNA into a library of 13,000 synthetic small-molecule macrocycles suitable for in vitro selection.
DNA-templated organic synthesis enables the translation, selection, and amplification of DNA sequences encoding synthetic small-molecule libraries. Previously we described the DNA-templated multistep synthesis and model in vitro selection of a pilot library of 65 macrocycles. In this work, we report several key developments that enable the DNA-templated synthesis of much larger (>10,000-membere...
متن کاملDNA-templated organic synthesis and selection of a library of macrocycles.
The translation of nucleic acid libraries into corresponding synthetic compounds would enable selection and amplification principles to be applied to man-made molecules. We used multistep DNA-templated organic synthesis to translate libraries of DNA sequences, each containing three "codons," into libraries of sequence-programmed synthetic small-molecule macrocycles. The resulting DNA-macrocycle...
متن کاملTranslation of DNA into synthetic N-acyloxazolidines.
The translation of DNA into synthetic molecules enables their manipulation by powerful evolution-based methods previously available only to proteins and nucleic acids. The development of increasingly sophisticated DNA-templated small-molecule syntheses is crucial to broadening the scope of this approach. Here, we report the translation of DNA templates into monocyclic and bicyclic N-acyloxazoli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 127 6 شماره
صفحات -
تاریخ انتشار 2005